Voltage Regulation Of Synchronous Machines [Alternator] By Synchronous Impedance Method or E.M.F. Method

Voltage Regulation Of Synchronous Machines [Alternator] By Synchronous Impedance Method or E.M.F. Method

Today in this post we are going to learn what is Voltage regulation of synchronous machine and different methods to calculate Voltage regulation of synchronous machine.

Definition for Voltage regulation of a synchronous machine:

Voltage Regulation of synchronous machine is defined as the difference between terminal voltage at no load and terminal voltage at full load and excitation and speed must remain same.Voltage Regulation of synchronous machine is generally calculated in percentage of full load terminal voltage.

Objectives for calculating Voltage regulation of a synchronous machine:

1. Parallel operation of alternators is affected by the voltage regulation. By calculating voltage regulation of synchronous machine we can adjust the parallel operating machines to be in synchronism.

2. Calculating voltage regulation of a synchronous machine determines the type of automatic voltage control equipment required for resisting the voltage changes.

3.When the load is thrown off voltage rise must be known because with the rise in voltage the insulation must be able to withstand this rise.

So calculation of voltage regulation of synchronous machine has a great importance.

General expression for calculating Voltage regulation of synchronous machine:

Now let us derive general expression for calculating voltage regulation of a synchronous machine

Let E be the terminal voltage of the synchronous machine at no load. Now if the synchronous machine is given full load the terminal voltage will no longer be E because of the losses so let the terminal voltage now be V.

So general expression for Voltage regulation of a synchronous machine is given by

Voltage regulation% = (E - V / V) × 100

Methods for calculating voltage regulation of synchronous machine:

There are two types of methods for calculating voltage regulation of synchronous machine.

1. Direct load test method.

2. Indirect Method.

Indirect method of calculating voltage regulation of synchronous machine can be further classified into 3 types:

1.EMF method or Synchronous impedance method.

2. MMF method or Ampere turn method.

3.Zero power factor method or potier method.

Direct load test method for calculating voltage regulation of synchronous machine by synchronous impedance method :

Now let's see how to calculate voltage regulation of synchronous machine by using direct load test method:

Circuit diagram for calculating Voltage regulation of synchronous machine by direct load test:

Circuit connections for calculating voltage regulation of synchronous machine by direct load test:

1.Firstly connections are to be made as given in the circuit diagram:

2. Armature which is star connected is connected to the three phase load with the help of TPST. TPST is a switch and it means triple pole single through. 

3. A rheostat is connected in series with the field winding. 

4. Field winding is excited by using D.C supply and flux is adjusted by adjusting the rheostat. Flux adjustment is nothing but adjust the current flow through field winding.

Procedure for calculating voltage regulation of synchronous machine by direct load test:

 1. Adjust the prime mover such that the alternator rotates at synchronous speed Ns.

 we know Eph α 𝞍 from emf equation

2. Now DC supply is given to the field winding and the current flow through field is adjusted so that the flux is adjusted such that the rated voltage is obtained at its terminals which can be seen on the voltmeter connected across the lines.

3. Now load is connected to alternator with the help of TPST switch.

4.The load is then increased such that the ammeter reads rated current. This is full load condition of alternator. Now as load is connected due to armature reaction there is loss in voltage so let the induced voltage be V. 

5.Now again adjust the rheostat of the field winding to get rated voltage at alternator terminals.

6.Now remove the load by opening TPST switch and the excitation , speed should not be changed it should be same as before removing the load.

7. As there is no load there is no armature reaction the induced emf is equal to terminal voltage which is E.  

Now we can calculate voltage regulation of synchronous machine by 

Voltage regulation% =( E - V / V) × 100 at a specific power factor.

Limitations for calculating voltage regulation of synchronous machine by using direct load method:

This method is applicable only for small capacity machines for larger capacity machines it is not economical because that much load cannot be given directly.

In this way we have calculated the voltage regulation of synchronous machine by direct load test method.

For larger capacity machines voltage regulation can be calculated by Indirect method.

In the next post we can see how to calculate voltage regulation of synchronous machine by Indirect method.

You can download PDF form of Voltage Regulation Of Synchronous Machines [Alternator] By Synchronous Impedance Method or E.M.F. Method .

Related Topics;

Searches related to Voltage Regulation Of Synchronous Machines
voltage regulation of alternator by synchronous impedance method
voltage regulation of alternator by mmf method
voltage regulation of alternator by zpf method
voltage regulation of alternator ppt
regulation of alternator by synchronous impedance method pdf
what is voltage regulation of alternator?
significance of voltage regulation
voltage regulation of alternator by direct loading


January 02, 2017 at 05:50PM by EEE, ADBU